BARC technical documents
The benchmark overview, the setup information and the output data requests for both experimental and computational approaches are reported in the documents:
To cite one of these BARC documents:
Bartoli G., Bruno L., Cimarelli A., Mannini C., Patruno L., Ricciardelli F., Salvetti M.V., (2020). Title of the document, https://www.aniv-iawe.org/barc
BARC papers
Are you submitting a manuscript in the wake of BARC?
Do not forget to include «BARC benchmark» among keywords for easy indexing!
In the following you can find in chronological order a selection of journal papers published in the wake of BARC
-
2010 Bruno et al, 3D flow around a rectangular cylinder: A computational study, JWEIA 98, 263-276, DOI: 10.1016/j.jweia.2009.10.005
-
2010 Mannini et al, Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects, C&F 39, 1609–1624, DOI: 10.1016/j.compfluid.2010.05.014
-
2011 Mannini et al, Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder, JWEIA 99, 469-482, DOI: 10.1016/j.jweia.2010.12.016
-
2012 Bruno et al, Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features, JWEIA 104-106, 203-215, DOI: 10.1016/j.jweia.2012.03.018
-
2013 Schewe Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5, JFS 39, 15-26, DOI: 10.1016/j.jfluidstructs.2013.02.013
-
2013 Arslan et al, Turbulent flow around a semi-submerged rectangular cylinder, JOMAE 135, 041801, DOI: 10.1115/1.4025144
-
2014 Bruno et al, Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An overview after the first four years of activity, JWEIA 126, 87-106, DOI: 10.1016/j.jweia.2014.01.005
-
2015 Nieto et al, Bridge deck flutter derivatives: Efficient numerical evaluation exploiting their interdependence 136, 138-150, DOI: 10.1016/j.jweia.2014.11.006
-
2016 Patruno et al, Numerical simulation of a 5:1 rectangular cylinder at non-null angles of attack, JWEIA 151, 146-157, DOI: 10.1016/j.jweia.2016.01.008
-
2016 Ricci et al, Effects of low incoming turbulence on the flow around a 5:1 rectangular cylinder at non-null-attack angle, MPE 2016, 2302340, DOI: 10.1155/2016/2302340
-
2016 Mariotti et al, Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder, C&F 136, 170-192, DOI: 10.1016/j.compfluid.2016.06.008
-
2017 Mannini et al, The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section , JWEIA 161 , 42-58, DOI: 10.1016/j.jweia.2016.12.001
-
2017 Ricci et al, Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction, C&F 149, 181-193, DOI: 10.1016/j.compfluid.2017.03.010
-
2017 Mariotti et al, Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5:1 rectangular cylinder, EJM B/Fluids 62, 149-165, DOI: 10.1016/j.euromechflu.2016.12.008
-
2018 Cimarelli et al, Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number, JWEIA 174, 39-49, DOI: 10.1016/j.jweia.2017.12.020
-
2018 Nguyen et al, Vortex-induced vibration of a 5:1 rectangular cylinder: A comparison of wind tunnel sectional model tests and computational simulations, JWEIA 175, 1-16, DOI: 10.1016/j.jweia.2018.01.029
-
2018 Cimarelli et al, On the structure of the self-sustaining cycle in separating and reattaching flows, JFM 857, 907-936, DOI: 10.1017/jfm.2018.772
-
2019 Alvarez et al, 3D LES simulations of a static and vertically free-to-oscillate 4:1 rectangular cylinder: Effects of the grid resolution, JWEIA 192, 31-44, DOI: 10.1016/j.jweia.2019.06.012
-
2019 Yang et al , Aerodynamic admittance of a 5:1 rectangular cylinder in turbulent flow, JWEIA 189, 125-134, DOI: 10.1016/j.jweia.2019.03.023
-
2019 Guissart et al, Numerical and experimental study of the flow around a 4:1 rectangular cylinder at moderate Reynolds number, JWEIA 189, 289-303, DOI: 10.1016/j.jweia.2019.03.026
-
2019 Lin et al, Effects of oscillation amplitude on motion-induced forces for 5:1 rectangular cylinders, JWEIA 186, 68-83, DOI: 10.1016/j.jweia.2019.01.002
-
2019 Ma et al Investigation on vortex-induced vibration of twin rectangular 5:1 cylinders through wind tunnel tests and POD analysis, JWEIA 187, 97-107, DOI: 10.1016/j.jweia.2019.01.002
-
2019 Cimarelli et al, On negative turbulence production phenomena in the shear layer of separating and reattaching flows, Ph Let A 383, 1019–1026, DOI: 10.1016/j.physleta.2018.12.026
-
2019 Moore et al, Energetic scales in a bluff body shear layer, JFM 875, 543–575, DOI: 10.1017/jfm.2019.480
-
2020 Wu et al, Large-eddy simulation of the near wake of a 5:1 rectangular cylinder in oscillating flows at Re=670, JWEIA 196, 104050, DOI: 10.1016/j.jweia.2019.104050
-
2020 Wu et al, Numerical investigation of the separated and reattaching flow over a 5:1 rectangular cylinder in streamwise sinusoidal flow, JWEIA 198, 104120, DOI: 10.1016/j.jweia.2020.104120
-
2020 Wu et al, Numerical and experimental studies on the aerodynamics of a 5:1 rectangular cylinder at angles of attack, JWEIA 199, 104097, DOI: 10.1016/j.jweia.2020.104097
-
2020 Zhang et al, Spanwise length and mesh resolution effects on simulated flow around a 5:1 rectangular cylinder, JWEIA 202, 104186, DOI: 10.1016/j.jweia.2020.104186
BARC CITATIONS
In the following you can find some statisticts on the selected journal papers above
(last update: June 2020)